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Abstract

In this paper we will be comparing and contrasting algorithms for finding strongly connected
components in directed graphs. First we will consider sequential algorithms built upon
techniques such as depth first search and topological sorting. These algorithms give linear
time, O(n) run-time but due to the sequential nature of a depth first search are hard to run
in parallel. This prompted the creation a new form of reach-ability based algorithms, whose
implementations take advantage of parallelism. Although this trade of comes at the expense
of a total run-time of O(n log n). We will explain both types of algorithms and show the
advantages and disadvantages of both, and discuss situations which where either would be
favourable.
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1 Introduction

Finding strongly connected components (SCCs) in a graph is a very natural graph problem
with many applications in computing. A strongly connected component within a graph is
a maximal set of vertices where there exists a path from ever vertex in the set to every
other vertex in the set. In the course we have seen the usefulness of the property of strongly
connectedness in the definition of a irreducible Markov chain [5]. Another more applied
example of strongly connected components is finding cyclical elements within a graph. This
is useful for many types of Electronic Aided Design (EDA) software which lays out digital
circuits. For instance, within a section of logical elements, loops must be detected to properly
analyze the timing of a circuit. Since digital circuit complexity is growing rapidly in size
EDA software compile time requires fast and efficient solutions to find SCCs within a graph.
EDA software is just one example of the importance of finding SCCs effectively, but SCC
algorithms are also important to a variety of other spaces such as DNA sequencing [6].

1.1 Definitions

We will now define some definitions that will be use throughout the paper.

• Let G = (V,E) be a directed graph.

• There is a path from vertex v to u: v → u

• Let C be a SCC defined as a maximal set C ⊆ V s.t ∀ (v, u) ∈ C, v → u and u→ v.
In other words all vertices in C have a path to one another.

• Let GT be the graph G, where the direction of all edges are flipped.

• Let δ(S) be the set of all edges leaving or entering a set of vertices S.

• Let GC be the component graph of G, where all SCCs have been replaced with a
supernode. For each SCC: C ∈ G replace it with a supernode with incident edges
δ(C).

• For v ∈ V , let vd, vf be the discover and finish time respectively.

• For some S ⊆ V define f(S) and d(S) as: f(S) = maxv∈S(vf ), d(S) = minv∈S(vd).
These are the minimum discover time and maximum finish time of a vertex in the set
S.
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Figure 1: Showing going from G to GC

2 Sequential Approach

The sequential algorithms for finding SCCs can be viewed as a solved problem, with much
of the research being accepted as optimal. There are now formal proofs for many of the
algorithms verifying there run-time and correctness [2]. Although there are many sequential
algorithms that solve in O(|V | + |E|) time complexity, we will focus on two of the most
popular algorithms, Kosaraju’s algorithm [4] and Tarjan’s algorithm [8].

Kosaraju’s algorithm has a simpler implementation than Tarjan’s, but requires two passes
of the graph while Tarjan’s only requires a single pass.

2.1 Kosaraju’s Algorithm

Kosaraju’s Algorithm is one of the simplest ways to find the SCCs in a graph in linear time.
It does this using the observation that the SCCs in G and GT are identical. The algorithm
requires two passes of the graph, the first to do a topological sort and the second to find
the SCCs. In each DFS we will mark nodes that we have previously visited and mark them
un-visited after searching all their outgoing edges.

Consider the following psuedo-code:
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Algorithm 1 Kosaraju’s Algorithm

1: procedure Kosaraju(G, b)
2: topologically sort G . calculate vd, vf | ∀v ∈ V
3: calculate GT

4: for v ∈ V by decreasing vf do
5: C ←DFS (GT , v) . start DFS at v, put all nodes visited in C
6: add C as a SCC and remove from GT

7: end for
8: return all SCCs found
9: end procedure

This algorithm is based upon the component graph GC , as defined in the definitions. A
property of the component graph is that it is a directed acyclic graph (DAG). Therefore if
we traverse GT by the decreasing finish time we will be always search only the deepest SCC
in GT , since GC is a DAG. Thus by doing a graph search from vf with the greatest finish
time we will reach only vertices in the deepest SCC. By doing this in order of greatest vf
we will find all the SCCs in order. Here deepest refers to the SCC such that there are no
outgoing edges to another SCC that has not been removed.

We will now prove the above statements formally. The proofs have been derived from
the work in [4].

Lemma 1. Let C and C ′ be distinct strongly connected components in directed graph G let
u, v ∈ C and u′, v′ ∈ C ′. If G has a path u→ u′, then there cannot exist a path from v′ → v.

Proof. By definition we know that C and C ′ are SCCs, therefore there are paths between all
their own vertices respectively. Assume to reach a contradiction that we have a path from
v′ → v. Thus if we have u → u′ and v′ → v we also have u → u′ → v′ → v → u. Thus
we have created a bigger SCC from C and C ′, this contradicts the fact that C and C ′ are
maximal. Therefore there must not be a path from v′ → v if there is a path from u→ u′.

This lemma implies that GC is a DAG.

For the proof of the following lemmas refer to [4].

Lemma 2. Let C and C ′ be arbitrary distinct SCC’s in G. If ∃ uv ∈ E such that u ∈ C
and v ∈ C ′ then f(C) > f(C ′)

Lemma 3. Let C and C ′ be arbitrary distinct SCC’s in G. Let uv ∈ ET , edges of GT , where
u ∈ C and v ∈ C ′. Then f(C) < f(C ′).

Theorem 4. Kosaraju’s Algorithm computes the strongly connected components of a input
directed graph G.
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Proof. We will prove the correctness of Kosaraju’s Algorithm by inducting on the number of
trees found by the DFS of GT on line 5 of the algorithm and that each tree’s vertices make
up those of a SCC within G. Let k be the number of trees found.

Base Case: k = 0.
Since there are no trees, the vertices in no trees trivially make up a SCC of size 0.

Induction Hypothesis:
Assume that for some k that the algorithm produces the first k trees of the DFS each

contain the vertices of an SCC.

Inductive Conclusion:
We will now show that it holds for k + 1 trees of the DFS search return the vertices of

each k + 1 SCCs.

Let us consider the (k+1)th tree and let the root of this tree be v. Also let C be the SCC
that contains v. By the construction of our algorithm vf must be the largest of the nodes
not yet removed from the graph. Therefore since vf is the largest we get vf = f(C) > f(C ′)
by definition of f , where C ′ is any SCC in the graph yet to be removed. From the induction
hypothesis we have that all vertices in C have yet to be visited by the algorithm. In addition
since C is a SCC all the DFS of v should reach all vertices in C as there is a path between
all vertices in C.

We also note that we are processing GT , thus vertices incident to any outgoing edges
of C must have already been visited in the algorithm. This is because if we consider some
outgoing edge from C to some other SCC C ′ we know from Lemma 3 that f(C) < f(C ′)
therefore C ′ must have already been processed and the DFS from v will not leave C on an
outgoing edge. Thus in any DFS from v will only reach nodes also within C and the vertices
of the (k+1)th tree visited by the DFS search will correspond to the vertices of the (k+1)th
SCC.

By the mathematical induction we have show that Kosaraju’s Algorithm successful com-
putes all the strongly connected components within an input directed graph G.

The analysis of the running time of Kosaraju’s Algorithm can be simply calculated as
O(|V | + |E|) because calculating GT and topologically sorting are both O(|V | + |E|). In
addition, the loop on line 4 will run once per vertex again giving O(|V |+ |E|). Thus we have
the total running time is O(|V |+ |E|).

Kosaraju’s Algorithm is a great start to finding the SCCs in a directed graph, and
highlights some of the interesting properties of DFS and the topological sorting of the graph.
Although when considering how to run this algorithm in parallel there is no easy transition
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due to the dependence on the state of the DFS and the progression of searching through nodes
on GT by finish time. Therefore there can be little to no gain for adding more processors.

2.2 Tarjan’s Algorithm

Tarjan’s Algorithm improves upon the main drawback of Kosaraju’s Algorithm which is the
requirement of multiple passes of the graph. Instead Tarjan’s Algorithm can compute SCCs
with a single DFS pass while maintain state upon a separate stack. Tarjan’s Algorithm
is the most popular sequential algorithm for finding SCCs due to it’s increased speed and
relatively straight forward implementation.

The strengths of Tarjan’s algorithm are also echoed by Turing Award winner Donald
Knuth in his article ”Twenty Questions for Donald Knuth” upon release alongside his book
the Art of Computer Programming. Where Knuth says “my favorite is the implementation
of Tarjan’s beautiful algorithm for strong components.” [9]. Followed by him commenting
that “the data structures that [Tarjan] devised for [the] problem fit together in an amazingly
beautiful way, so that the quantities you need to look at while exploring a directed graph
are always magically at your fingertips. And his algorithm also does topological sorting as a
byproduct” [9].

Further outlining how Tarjan’s Algorithm is one of the optimal algorithm for finding
SCCs sequentially within a directed graph.

We will now consider the pseudo-code of Tarjan’s Algorithm:
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Algorithm 2 Tarjan’s Algorithm
1: i← 0
2: create new stack
3: procedure DFS(v)
4: vlow ← i
5: vd ← i
6: i← i+ 1
7: place v on stack
8: for w ∈ δ(v)out do . δ(v)out is outgoing edges of v
9: if wd is undefined then . w not yet visited
10: DFS(w)
11: vlow = min(vlow, wlow)
12: else if wd < vd then . w
13: end if
14: end for
15: if vlow = vd then . v is the root of the component
16: create new SCC
17: while u = Top(stack) s.t ud ≥ vd do . We have the answer if r is 0
18: remove u from the stack
19: add u to new SCC
20: end while
21: end if
22: end procedure
23: while v ∈ V where vd is undefined do
24: DFS(v) . Apply method on any unvisited vertices
25: end while
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Now let us explain the definition used in the above algorithm. These have been derived
from [8].

• Let vd be the discover time of a vertex and vlow be the the be the smallest vd reached
by traversing zero or more edges following not in the DFS tree (i.e edges to previously
visited vertices).

• Let v →∗ w denote a path from v to w.

• Let v →− w denote an edge from v to w where w is in the DFS search tree, i.e
previously visited.

The algorithm formally defines the low property of a vertex as:

vlow = min({vd} ∪ {w|v →∗→− w and ∃ u such that (u→∗ v and u→∗ w
and u,w are both in the same SCC)} (1)

Tarjan goes on to prove the following theorem which is used to prove the correctness of
the algorithm [8].

Theorem 5. Let G be a directed graph. Based upon the above definition for vlow, a vertex v
is the root of SCC if and only if vd = vlow.

Here root is defined as the vertex that separates the strongly connected component from
the rest of the graph. It can also been seen from the definition of vlow that if vd = vlow then v
must have the smallest vd out of all the vertices within it’s SCC. Then it can be inductively
argued that by considering the vertices it reaches in a DFS, that were not previously put
into SCC, are within it’s own SCC.

Therefore on line 15 of the algorithm we can consider all the vertices added to the stack
in the DFS and can construct the SCC by pulling them off the stack. In addition, we will
not need to worry about vertices in an SCC connected to the SCC of v by an outgoing edge
as they will be previously popped off the stack and added to their respective SCC.

The full proof of correctness can be found in Tarjan’s original paper. In summary the
paper is very well written and I found it highlight the strength true of and expand upon
the usefulness of depth first search when designing sequential graph algorithms. Reading his
paper can provide a deeper understanding of the power of DFS beyond simply searching. [8].

For the run time of the Tarjan’s algorithm we can see that it is also O(|V | + |E|), but
now only requires one pass of the graph. Therefore Tarjan’s algorithm will run much faster
than Kosaraju’s Algorithm.

But again as in we saw in Kosaraju’s Algorithm, Tarjan’s Algorithm is a purely sequential
algorithm. It is highly dependant on the DFS and the current state of the stack. This again
makes it hard to run in parallel as the work of the algorithm is hard to subdivide.
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3 Parallel Approach

Due to the previous algorithms sequential nature of their approaches to solving the SCCs
problem makes it hard to gain from distributed computing. Therefore a new paradigm of al-
gorithms have been devised, these algorithms are commonly referred to as reachability based
algorithms. The approach of these algorithms is to divide up the problem into solvable sub
problems allowing for multiple processors to be taken advantage of. Although they do not
hope to reduce the total work of finding the SCCs, rather trade of doing more work but
being able to run concurrently [7]. The trade off of time and work of these algorithms is a
key consideration when comparing them to their sequential counter parts.

A reachability based SCC algorithm is based on the idea that all the vertices that are
both reachable from v and can reach v form a SCC by definition. Therefore by doing two
reachability queries through the graph, the first following edges normally and the second
following edges in reverse, we can take their intersection of vertices to find one SCC in the
graph. By repeating this process all the SCCs in the graph can be found. In addition to
finding the SCCs, the sets created through the reachability queries can be used to sub-divide
the problem, a useful property for divide and conquer algorithms.

Through this approach reachability based approach Coppersmith et. al have shown that
with a random pivot selection that this algorithm runs in O(m log n) time when ran in a
sequentially fashion [3]. The random pivot selection analysis is very similar to that done in
the quick-sort sorting algorithm.

In general parallel algorithms and divide and conquer go hand in hand but if we consider
this reachability based approach the subsets created after finding one SCC are not always
optimally balanced. One example given by Guy E. Blelloch et. al is a spare graph [1]. In this
case a limited number of vertices would be found in each iteration, resulting in unbalanced
partitions which will produce a recursive depth of O(|V |).

To combat the depth of recursion Warren Schudy developed an algorithm to better par-
tition of the subsets and limiting the number of reachability queries is O(log2 |V |). Although
by doing so he reduces the speed of the algorithm from the original by a factor log factor.

More recently in 2018 Guy E. Blelloch et. al have devised an process of analyzing
sequential randomized incremental algorithms and showing they can be run in parallel [1]. We
will use their definitions and analysis of a reachability algorithm to show that the following
reachability based sequential algorithm can be run in parallel efficiently.
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Psuedocode from [1].

Algorithm 3 Reachability based SCC

1: V ← vertices of the graph in random order
2: SSCC ← ∅
3: for i← 1 to n do
4: S ∈ V . V sub graph containing vi
5: if S 6= ∅ then
6: R+ ←Forward-Reachability(S, vi)
7: R− ←Backward-Reachability(S, vi)
8: VSCC ← R+ ∩R−
9: V ← V \ S ∪ {R+ \ VSCC , R

− \ VSCC , S \ (R+ ∪R−)}
10: SSCC ← SSCC ∪ VSCC

11: end if
12: end for

This algorithm can be transformed into a parallel algorithm randomized (Las-Vegas) par-
allel algorithm to solved the SCC problem. A Las-Vegas randomized algorithm means that
the algorithm will always produce the correct answer and our running time will be bounded
with high probability.

In order to transform this sequential incremental algorithm we will use the work done by
Guy E. Blelloch et. al [1].

The main idea is to run batches of the iterations of the sequential algorithm in parallel
and show that when randomized they have low dependency on one another. With regards to
the SCC problem this means that we will run the for loop as a parallel for loop for batches
of vertices. By doing so Guy E. Blelloch et. al shows that the overlapping work will not
effect the correctness of the algorithm by assigning a priority to each parallel processor.

First in their description Guy E. Blelloch et. al divide up the problem into a set of
O(log n) rounds. Within these rounds they run parallel versions of the sequential algorithm,
i.e computing the reachability for each vi within the batch. While doing this across pro-
cessors the reachability is stored on the vertices, by the priority of the vertex running the
reachability queries. This means that if two vertices va, vb in the random ordering are both
running in a parallel batch and they both reach a vertex vi, then vi will store only the reach-
ability of va as va ≤ vb within the random ordering (lower having a higher priority as it was
earlier in the ordering).

Since if va and vb’s reachability queries reach vi, they will be in the same SCC anyways
and thus the collision is resolved by using the order of the vertices.
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Through this dependency ordering argument Guy E. Blelloch et. al are able to prove the
following theorem.

Theorem 6. For a random order of the vertices in a graph, when running the random
incremental SCC algorithm in parallel it does O(WR(|V |, |E|) log |V |) expected work and has
O(DR(|V |, |E|) log |V |) depth on a priority concurrent read, concurrent write PRAM (CRCW
PRAM) model .

Here WR refers to the work needed to be done by a reachability query and DR is the
depth of the reachability queries. We leave these as a black box algorithm as there are many
different algorithms for performing reachability such as a using a breath first search.

We also note that a CRCW PRAM model is used by considering the priorities we set
on the vertices. Therefore in our example above of two vertices reaching the same vertex
in the same step, the vertex with priority will be write able to write to the vertex and the
other will be ignored. This alleviates synchronization issues with running the queries from
the verities in parallel.

Therefore by consider a simple implementation for the execution of the reachability
queries such as BFS we get WR(|V |, |E|) = O(|E|) and DR(|V |, |E|) = O(|E| log |V |) as
well. Therefore the total work of the parallel algorithm would be O(|E| log |V |) and the
depth to be . If we can run this work optimally across P processors we can approximate
the running time as O(|E| log |V |/P +DR(|V |, |E|)) = O(|E| log |V |/P + |E| log |V |)), when
using a breath-first search. [1].

Here we see that if the depth of the graph is high the resulting depth of the reachability
queries is also increased, and the use of parallel processors deteriorates. Although for graphs
with a low diameter using a breath first search will work find as it can have a tighter bound
than |E| for the depth of the graph.

4 Conclusions

We have looked at both the sequential and parallel techniques for finding strongly connected
components withing a graph. The sequential approaches provide a fast O(|V |+ |E|) running
time, while the parallel approach sacrifices total work and uses an ordering argument to
sub-divide the problem.

After analyzing the different approaches it can be seen that their is no optimal choice
for the algorithm and instead it depends on the types of input graphs to be analyzed. For
instance, for graphs that are not massive the sequential linear approach is fast enough for
most applications. In addition, if one simply wishes to determine if there are a few small
SCCs or no SCCs in a graph it would be clearly superior. This is because in the case of only
a few SCCs SCCs the amount of parallelism available is small, as most vertices would be in
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the trivial SCC of just them self. This would result in all the reachability queries only ever
returning one vertex. While on the other hand for the sequential approach the solution can
be determined in O(|V |+ |E|) in a single traversal through Tarjan’s algorithm. Thus when
there are none or few small SCCs the sequential approach is cleary better.

Now if we consider the opposite case of there being large SCCs within the graph the
parallel algorithm will able to take advantage of this sub-division and find large SCC within
one step of the algorithm (i.e doing reachability queries for one vertex).

Relating back to the problem of finding SCCs in circuit designs for EDA software the
sequential approach is still the best way to go. Most digital circuit designs today are made
of synchronous logic (using registers between sections of logic). This leads to there being
very few un-synchronized (not register separated) cycles within a circuit design. This is the
case as having cycles in a circuit creates asynchronous logic making timing analysis much
more difficult and the circuit more unpredictable. As cyclic logic is unfavourable in digital
circuit designs the detection of SCCs is motivated by ensuring none exists in the design,
and highlighting any SCCs found to the designer to fix. Therefore as described previously
a sequential algorithm such as Tarjan’s will work best in this case, as SCCs are rare within
the input graphs. Therefore in EDA software a sequential SCC algorithm approach is much
preferred due to the properties of the possible input graphs that digital circuits, as they
contain few SCCs and are manageable size graphs.
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